Modeling Cumulative Arm Fatigue in Mid-Air Interaction based on Perceived Exertion and Kinetics of Arm Motion

Sujin Jang¹, Wolfgang Stuerzlinger², Satyajit Ambike¹, Karthik Ramani¹ 1: Purdue University, 2: Simon Fraser University

HANDS AS INPUT DEVICE

"Minority Report" directed by Steven Spielberg (2002)

"Iron Man 2" directed by Jon Favreau (2010)

- Strength Required:
 15.4% (female), 12.3% (male)
 - Endurance Time:

10.5 minutes

- Mathiassen and Ahsberg [1999]

What is *Fatigue*?

Fatigue:

- <u>Decline in maximal force or power capacity of</u> muscle due to a <u>sustained activity</u>

- Physiological and psychological factors Enoka and Stuart [1992]

Cumulative Fatigue involves both active and rest periods

Industrial Ergonomics

Virtual/Augmented Reality

Sports Medicine

User Interfaces for Aged

Fatigue in Mid-Air Interaction Design

- Less-fatiguing interaction design
- Evaluating and optimizing user fatigue

7

Quantifying cumulative fatigue

HCI concern "Arm Fatigue" (in more than 300 publications)

No good analysis method

Arm Strength Measure

- Fatigue: reduction of arm strength Enoka and Stuart [1992]
- Measurement of an individual's max. strength
- Sensor-based direct measurements

Objective Fatigue Measure

- Muscle activation—Electromyography (EMG) –Cifrek et al. [2009]
- Arterial oxygen Westerblad et al. [2002]
- Lactic acid accumulation Westerblad et al. [2002]
- Heart rate Segerstrom et al. [2007]

Invasive, Impractical, Expensive.

Subjective Fatigue Measure

- Likert scale Carifio et al. [2007], NASA TLX Hart et al. [1988]
- Borg CR-10 Borg [1982]

Direct verbalization, Multiple recordings, Less invasive.

scapular senso

er trapeziu

Score	Definition	Note
0	Nothing At All	No arm fatigue
0.5	Very, Very Weak	Just noticeable
1	Very Weak	As taking a short walk
2	Weak	Light
3	Moderate	Somewhat but Not Hard to Go on
4	Somewhat Heavy	
5	Heavy	Tiring, Not Terribly Hard to Go on
6		
7	Very Strong	Strenuous. Really Push Hard to Go on
8		
9		
10	Extremely Strong	Extremely strenuous. Worst ever experienced

thoracic se

Fatigue Measure in HCI

- Consumed Endurance (CE, Hincapié-Ramos et al. [2014])
 - Strong correlation between CE and subject fatigue ratings

 $CE(T, TotalTime) = \frac{TotalTime}{E(T)} + 100$

- No consideration of rest
- $E(T_{shoulder}) = \frac{1236.5}{\left(\frac{T_{shoulder}}{T_{max}} * 100 15\right)^{0.618}} 72.5 \text{No cor}$
- Zero fatigue below 15% exertion
 - No consideration of individual's max. arm strength
- Biomechanical Simulations (Bachynski et al. [2015])
 - Muscle activation simulation using OpenSim
 - No consideration of rest
 - No correlation with subjective fatigue rating
 - Expensive set-up and computing required

Contributions

Simple and effective method to **measure shoulder strength**

Fatigue model predicting cumulative subjective fatigue

Fatigue model that accounts for both subjective and biomechanical measure

Biomechanical Arm Model and Analysis

Traditional Direct Arm Strength Measurement

C: distance between C.O.M of arm and shoulder joint, G: gravity (9.8 m/s^2)

Our Indirect Arm Strength Measurement

Comparison Results

- Indirect (ours) vs. Direct (traditional) max. shoulder torque measure
- 24 participants (4 female, 20 male)

15

Averaged absolute error = 6.1 Nm (SD=5.0 Nm)

Averaged %Error = 8.4% (SD=6.21%)

Paired t-Test: no significant difference between two methods (*p* = 0.129)

Cumulative Fatigue Model – Goal

Target Load (Biomechanical Measure)

 $[TL] = [T_{current}/T_{max}] * 100(\%)$

• Estimates Subjective Fatigue Measure (Borg CR10 ratings)

Score	Definition	Note
0	Nothing At All	No arm fatigue
0.5	Very, Very Weak	Just noticeable
1	Very Weak	As taking a short walk
2	Weak	Light
3	Moderate	Somewhat but Not Hard to Go on
4	Somewhat Heavy	
5	Heavy	Tiring, Not Terribly Hard to Go on
6		
7	Very Strong	Strenuous. Really Push Hard to Go on
8		
9		
10	Extremely Strong	Extremely strenuous. Worst ever experienced

Cumulative Fatigue Model

Three-Compartment Muscle (TCM) Model -XIa et al. [2008]

Free parameters: F, R

 $\begin{array}{l} \underset{F,R}{\text{minimize}} & \sqrt{\frac{1}{n}\sum_{i=1}^{n}[\phi(M_{F}(i)) - B(i)]^{2}} & M_{F}(i) = \text{Fatigue estimation} \\ & B(i) = \text{Subjective fatigue ratings (Borg CR-10)} \\ & \phi(\cdot) = \text{Linear mapping function} \end{array} \end{array}$

 $M_R + M_A + M_F = 100\%$ Muscle Units $M_R =$ Muscle unit (MU) in **Rest** state, $M_A =$ MU in **Active** state,

 $M_F = MU$ in **Fatigued** state (**output**),

$$C(t)$$
 = Muscle activation/deactivation drive
 $\widehat{\Pi}$
 $[TL = [T_{current}/T_{max}] * 100(\%)$ = Target load (Input)

18

Experiments: Mid-Air Pointing Tasks

- Goal:
 - Find optimal fatigue model (parameters F and R)
 - Evaluating subjective fatigue estimation performance
- Tasks: Mid-air pointing (ISO 9241-9)

Hit as many targets as you can while keeping good accuracy.

Experiments: Mid-Air Pointing Tasks

• Procedure:

• 24 Participants:

ŤŤŤŤŤŤŤŤŤŤŤŤŤ Group 2

Given rest duration:[5s-10s-20s-15s]

• Data recording:

- Borg CR10 ratings every 20 seconds and at the start/end of rest
- Body skeleton tracking using a Kinect 2.0

Score	Definition
0	Nothing At All
0.5	Very, Very Weak
1	Very Weak
2	Weak
3	Moderate
4	Somewhat Heavy
5	Heavy

6	
7	Very Strong
8	
9	
10	Extremely Strong

Model Performance Analysis

- Goals:
 - Evaluate the model performance in estimating subjective cumulative fatigue,

→ Leave-one-out cross-validation over all subject data

 <u>Effect of interaction conditions</u> (interaction zones, rest period orders) to the model performance.

→ ANOVA mixed interaction factors analysis

Model Performance Analysis – Leave-One-Out

Leave-one-out cross-validation over all subject data

Ours: overall-RMSE = 0.93, (Range=[0.67,1.19])

CE: overall-RMSE = 2.96, (Range=[2.12,3.60])

ANOVA Mixed Interaction Factors Test

	Group 1	Group 2
Test and stilling many an	G1-H: shoulder level	G2-H: shoulder level
Interaction zones	G1-L:waist level	G2-L:waist level
Rest order	[20s, 5s, 15s, 10s]	[5s, 10s, 20s, 15s]

- Within-subject factor = interaction zones
- Between-subject factor = rest period order

Robust to between group conditions (rest orders, p = 0.071)

Relatively more affected by interaction space conditions (high and low interaction zone, p < 0.001)

Conclusion

- Simple and effective max. shoulder strength measurement (8.4 %Error)
- Our model estimates cumulative subjective fatigue considering both rest and active periods: RMSE = 1.46 (14.6%)
- Real-time (50Hz) evaluation of cumulative fatigue
- Our model does not limit the range of exertion (i.e., 15% exertion)

- Ergonomic evaluation of interaction techniques
- Proactive fatigue management
- Personalized training
- Smart-home/mobile therapy apps

Sujin Jang PhD Candidate (jang64@purdue.edu) Purdue University, IN, USA

Satyajit Ambike Assistant Professor (sambike@purdue.edu) Purdue University, IN, USA

Karthik Ramani Donald W. Feddersen Professor (ramani@purdue.edu) Purdue University, IN, USA

SCHOOL OF INTERACTIVE ARTS + TECHNOLOGY

CODE RELEASE! <u>TINYURL.COM/CUMULATIVE-ARM-FATIGUE</u>

QUESTIONS?