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Tracking the Human Body
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Microsoft Kinect

Leap Motion

Intel RealSense

Vision-based

markerless sensors

Vicon

Optical markers

XSens

Perception Neuron

Wearable sensors

Cyber Glove



Digitizing Human Motions
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Source: http://southpaw.com.my

Gesture Pattern Studies

http:///
http://www.southpaw.com.my/product-services/products-services-details/


Mobile Interaction

Air+Touch, Chen et al. [2014]
Kim et al. [2005] Buchmann et al. [2004]

Virtual/Augmented Reality

BMW 2016 i7 Series

Automotive Environments

Xbox 360

Entertainment

Bleiweiss et al. [2010]
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Gesture Pattern Studies
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• Understanding gesture patterns

• Natural and intuitive interactions

• Gesture pattern studies

• Identifying similar and common gestures

• Categorization of gestures into pattern groups

• Gesture vocabulary design



REQUIREMENTS ANALYSIS
from gestural interaction designer

R1: Visualizing
multiple gestures

R2: Investigating
interesting gestures

R3: Identifying
similar/dissimilar gestures

R4: Organizing
gesture database

R5: Sharable and transferrable
pattern analysis results

8



Visual Analytics for Human Motion Analysis
9

GestureAnalyzer-Jang et al. [2014]

Visual space / scalability

Redundant pose block

Completed spatio-temporal

motion trend



Visual Analytics for Human Motion Analysis
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Simplified overview

MotionExplorer-Bernard et al. [2013]

Encoding local transitions

Incomplete motion trend

No support for organization

Edge crossing & cluttering



MotionFlow
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Motion Pattern Tabs



WORKFLOW
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Defining Pose 

States

Abstraction & 

Aggregation
Visualization

Human: Pattern Models

: Data : Interaction

Motion Database
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User-Driven Pose State Definition
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• Poselet

• Pose state graph Similar

Clusters
Dissimilar

Clusters

Cluster variance

State ID

Stick-figure

- Force-directed graph layout

- Interactive K-Means clustering:

Global / Local cluster manipulation



Global manipulation: Slider
20



Local manipulation: Split/Merge
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Local manipulation: Lock
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Visual Abstraction
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Pose State Occurrence

Pose States Pose States Transition



Visual Aggregation
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Combine the same pose state transitions

: 𝑷𝟏

: 𝑷𝟐



Visual Motion Concordance: Pose Tree
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…

Word Tree - Wattenberg and Viégas [2008]



Visual Motion Concordance: Pose Tree
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…



Visual Motion Concordance: Pose Tree
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• Edge: Flow Visualization

Thickness: Transition Frequency



Pose Tree – Navigating Tree
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Search Similar Motion Pattern
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: 𝑷𝟗 = [𝒄𝟒, 𝒄𝟎, 𝒄𝟓, 𝒄𝟐, 𝒄𝟒]

Query 𝑷𝟗

Frequent Sequential

Pattern (FSP) Mining

Bag of FSPs

Create

: 𝑷𝟏 = [𝒄𝟒, 𝒄𝟓, 𝒄𝟐, 𝒄𝟒]

: 𝑷𝟓 = [𝒄𝟒, 𝒄𝟓, 𝒄𝟎, 𝒄𝟓, 𝒄𝟐, 𝒄𝟒]

: 𝑷𝟖 = [𝒄𝟒, 𝒄𝟎, 𝒄𝟓, 𝒄𝟐, 𝒄𝟓, 𝒄𝟒]

: 𝑷𝟗 = [𝒄𝟒, 𝒄𝟎, 𝒄𝟓, 𝒄𝟐, 𝒄𝟒]

Result



Example Scenario: Creating a Gesture Pattern
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Most frequent pattern



Example Scenario: Progressive Organization
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X 10 Speed



Evaluation: Expert Reviews
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• Goal: Evaluate usability of MotionFlow in practical analysis tasks

• 6 Participants:

Interaction designers Human motion analysts

• Tasks:
 T1: Generating representative pose states

 T2 & T3: Identifying and exploring most common (T2) and unique (T3) 
motion patterns 

 T4: Organizing unlabeled motion data into a meaningful set of motion 
patterns

• Data: Gesture database recorded in elicitation studies [Jang et al. 2014]

 13 of 7-Likert scale questions & 7 of open-ended questions

34 clips of

6 gesture styles

68 clips of

12 gesture styles



Results
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Pose-state graph view
• Generating user-driven pose states

 Organizing gesture patterns

• Linking with Pose Tree view
 Understanding contexts of pose states in gesture pattern

Linking

Role of animating gestures
• Animation cannot be replaced by Pose Tree 

and Pose-State Graph visualizations

• But integrating with them greatly supports sensemaking process



Limitations
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• Scalability

multiple root nodes, large number of sequence patterns

• Analysis of a long period of gesture recording

Pose Forest ?

Search and navigate

multi-tree structures

Pose States Transition

A2
A3

A4
A5

A6
A1

Action States Transition



Conclusions
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Pose Tree:
Complete motion trends 

Flow visualization:
Transition frequency

MotionFlow:
Easy to learn/use and effectively support pattern analysis

Local/global clustering manipulation:
User-defined pose states reflecting human 
perception and data context
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