CMDA: Cross-Modal and Domain Adversarial
Adaptation for LiDAR-Based 3D Object Detection
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Domain Shifts on LiDAR-based 3D Object Detection 2. Cross-Domain Adversarial Network (CDAN)
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v' We advocate leveraging multi-modal inputs during the training phase to enhance
the generalizability across diverse domains

v" First, we encourage the LiDAR BEV features to learn rich-semantic knowledge from Waymo (S) -> @ nuScenes (T) nuScenes (S) > @ KITTI (T)
camera BEV features '

v Second, we explicitly guide such cross-modal learning via cross-domain
adversarial pipeline, achieving generalized perception against unseen target
conditions
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1. Cross-Modal Knowledge Interaction (CMKI)
v' CMDA results in a harmoniously dispersed feature space encompassing both
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mage : | | R Outer ° " BEV AP 1 /3D AP % Closed Gap 1 BEV AP 1/3D AP } Closed Gap 1
Backbone 1 ™ Product Direct Transfer 39.18/20.78 41.30/25.89
| ! ST3D (Yang et al. 2021) 45.35/27.12 +21.62% / +19.08% 52.50/36.21 +38.63% / +31.07%
v v iy |mage i“%f;;; ST3D++ (Yang et al. 2022) 44.87/25.79 +19.94% / +15.08% S =% | ~~%
I mage Depth /’ Feature F _ CMDA (Ours) 46.79 / 29.42 +26.66% / +26.00% 58.57 / 45.58 +59.57% | +59.29%
/ )| SERLN TN
- - B Oracle 67.72/54.01 70.29 / 59.10
Feature Fl EStImatlon BEV Direct Transfer 51.84/17.92 68.15/37.17
Feature Fbev SN (Wang et al. 2020) 40.03/21.23 -37.55% / +05.96% 60.48 / 49.47 -36.82% / +27.13%
/ ST3D (Yang et al. 2021) 75.94/54.13 +76.63% [ +59.50% 78.36/70.85 +49.02% / +74.30%
PSS ST3D++ (Yang et al. 2022) 80.52 / 62.37 +91.19% / +80.05% S — ——% [ —~%
DTS (Hu, Liu, and Hu 2023) 81.40/ 66.60 +93.99% / +87.66% 83.90/71.80 +75.61% [ +76.40%
v' Precise geometric alighment is essential to ensure the quality of both image and CMDA (Ours) SL13/68.95  +9631%/+91.90%  8485/75.02  +80.17%/+83.50%
. Oracle 83.29/73.45 88.98 /82.50
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. P . . - ) H P : SN (Wang et al. 2020) 33.23/18.57 +01.69% / +07.54% 34.22/22.29 -01.50% / +04.80%
‘/ We prOJeCt mUItI mOdaI InpUtS |nt0 BEV (Blrd s Eye VIEW) JOInt representatlon’ ST3D (ang et al. 2021) 35.92/20.19 +15.87% / +16.73% 36.42/22.99 +10.32% / +08.89%
faCllltatlng effective cross-modal knowledge interaction wﬂg@ | ST3D+-|- (Yang et al. 2022) 35.73/20.90 +14.87% / +20.76% ——]—= —=% | ——%
] ] ] ] . . . . — nuscenes [P (Wei et al. 2022) 40.66 / 22.86 +40.85% / +31.88% 43.31/25.63 +47.34% [ +24.34%
v We optlmlze 3D LiDAR-based features to contain h|gh|y informative semantic clues DTS (Hu, Liu, and Hu 2023) 41.20/23.00 +43.70% / +32.67% 44.00 / 26.20 +51.04% / +27.68%
] CMDA (Ours w/ LD) 42.81/ 24.64 +52.19% / +41.97% 44.44 / 26.41 +53.41% / +28.91%
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Points per Object iclul during training) domains, we propose CMKD composed two main steps: (i)Cross-
modal LiDAR Encoder Pre-training and (ii) Cross-Domain LiDAR-Only Self Training.
v' CMKI effectively capture hard samples (i.e., low resolution and far distant objects) v In (i), a pair of image-based and LiDAR-based BEV features is aligned to learn
that hinder self-training paradigm modality-agnostic (and thus more domain-invariant) features.
v’ Specifically, CMKI suppresses type 1 and 2 errors, inducing high quality pseudo v' Further, in (ii), we apply an adversarial regularization to reduce the representation
ground truths gap between source and target domains.
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