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Overview
In this Appendix, we supply further explanations and vi-
sualizations of our main paper, “CMDA: Cross-Modal and
Domain Adversarial Adaptation for LiDAR-based 3D Ob-
ject Detection”. Initially, we outline the procedure for gen-
erating the BEV feature map from 3D point clouds. Subse-
quently, we provide details about the implementation and
large-scale datasets, including analysis of LiDAR sensors
that induce domain shifts across datasets. Also, we conduct
additional experimental studies to validate the effectiveness
of our novel unsupervised domain adaptation (UDA) frame-
work CMDA. Moreover, we supply more qualitative analy-
sis with diverse scenarios. The code will be released soon
after internal discussion.

Points-to-BEV feature map Generation.
Our LiDAR stream starts from common approaches (Deng
et al. 2021; Li et al. 2022; Shi et al. 2020; Yan, Mao, and Li
2018) to extract the BEV features from the LiDAR points.
The points P P RNp

ˆ3 are first divided into uniformly
spaced 3D voxel grids, which are input into a voxel back-
bone to extract voxel features (illustrated in Fig.1 of our
main paper). Then, the voxel features F vox

P P RXˆY ˆZˆC

are compressed along the height dimension to produce the
feature map F bev

P P RXˆY ˆZC in the BEV space, where X,
Y, Z, and C represent width, length, height, and the number
of channels, respectively.

Experimental Setup.
Datasets.
We evaluate adaptation performance using landmark bench-
marks: nuScenes (Caesar et al. 2020), Waymo (Sun et al.
2020), and KITTI (Geiger, Lenz, and Urtasun 2012).

Waymo. The Waymo dataset (Sun et al. 2020) consists of
high-quality and large-scale data with 230K frames from
all 1,150 scenes using multiple LiDAR scanners and cam-
eras. Furthermore, for the generalization purpose, Waymo is
recorded at diverse cities, weather conditions, and times. For
object detection in 2D or 3D, Waymo provides point cloud-
annotated 3D bounding boxes as 3D data pairs and RGB
image-annotated 2D bounding boxes as 2D data pairs.

nuScenes. The nuScenes dataset (Caesar et al. 2020) uses
six cameras that cover a full 360-degree range of view and
a single LiDAR sensor to obtain 40K frames from all 1,000
scenes. The nuScenes frames are captured in the same man-
ner as Waymo dataset for the data diversity. But unlike
Waymo, nuScenes provides labels only for the point cloud
data with 23 classes of 3D bounding boxes.

KITTI. The KITTI dataset (Geiger, Lenz, and Urtasun
2012) consists of the point cloud from a single LiDAR sen-
sor and front camera images. Also, compared with Waymo
and nuScenes dataset, KITTI is recorded at only the day time
and provides 15K frames from all 22 scenes, which is rela-
tively smaller than others. KITTI also provides ground truth
correspondance to the point cloud and images labeled with
28 classes for 2D and 3D object detection.

Analysis of Domain Shift between Datasets.
In Tab. 1, we compare large-scale benchmarks, which are
primarily used for 3D object detection tasks. There are many
differences between them, including LiDAR type, Beam An-
gles, Points per Beam, Camera View, and Location. While
every difference causes domain shifts, variations in the sen-
sor configurations or country-specific factors induce a sub-
stantial domain gap across datasets.

Table 1: Dataset details. Note that each statistical informa-
tion is calculated from the whole dataset. Beam Angles in-
dicates the vertical field of view (VFOV) of 3D sensors.

Dataset LiDAR Type Beam Angles Points per Beam Camera View Location
nuScenes 32-beam [-30.0˝, 10.0˝] 1,084 Multi-view USA and Singapore
KITTI 64-beam [-23.6˝, 3.2˝] 1,863 Single-view Germany
Waymo 64-beam [-18.0˝, 2.0˝] 2,258 Multi-view USA

First, transferring knowledge from high-beam data to low-
beam data is challenging due to the loss of details. There-
fore, addressing this issue becomes crucial in order to fully
utilize the potential of large-scale datasets collected using
high-beam sensors. Also, each dataset contains data from
diverse nations: USA, Singapore and Germany. These dis-
crepancies in the local environment for data collection are
significant fatal causes of box scale errors.

Moreover, we observe the inductive bias deriving from
annotation policies. For example, Waymo and KITTI have



only one class for “vehicles”, whereas nuScenes contains
multiple classes, including “car”, “truck”, “bus”, and “con-
struction vehicle”. Ultimately, the adaptation of uniform-
labeled to previously unseen various-labeled domains often
results in poor generalization performance, detecting multi-
ple false positives, and vice versa.

Implementation Details.
We validate the generalizability of our core modules
on LiDAR-based 3d object detection models, specifically
SECOND-IoU (Yan, Mao, and Li 2018) and PV-RCNN (Shi
et al. 2020). Our camera stream processes single or multi-
view images of size p640, 960q, which are converted through
padding and rescaling, and generates the BEV feature map
through the Images-to-BEV view transform process. Fur-
thermore, we train our image-assisted source pre-trained
model for adversarial domain adaptive self-training on 15
epochs using the Adam optimizer and a learning rate of
1.5 ˆ 10´3. Note that we use grid search to identify opti-
mal hyperparameters for our approach.

Additional Experimental Results.
In addition to various ablative studies of our main paper, we
conduct extensive experiments on our proposed modules.
We focus on the self-training process with CDAN, which
smartly extends the standard self-training approach (Yang
et al. 2021, 2022) to adapt effectively to unfamiliar target
data distributions. Our novel domain-adaptive self-training
approach adversarially pilots the network to restrict learning
domain-invariant cues and enhance the accuracy of pseudo-
labels. Specifically, we fool the discriminator to relieve the
representational gap between the source vs. target. We first
investigate the discriminator in more detail.

Table 2: Quantitative examination on the number of
instance-level features fi, which inputs to adversarial do-
main discriminator. We evaluate each module in Waymo
Ñ nuScenes setting on SECOND-IoU (Yan, Mao, and Li
2018). Note that we highlight the best in bold for visibility.

Task Number of Features
SECOND-IoU

BEV AP Ò 3D AP Ò

Waymo (Caesar et al. 2020)
Ñ nuScenes (Sun et al. 2020)

1,000 42.18 23.02
2,000 42.32 24.33
3,000 42.81 24.64
4,000 42.52 24.15
5,000 42.07 23.59

The discriminator takes instance-level features fi from the
detection head and predicts where each instance is located in
source or target regions. In Tab. 2, we study how the number
of instance-level features affects the performance of the self-
training process. To discover the optimal number of features,
we fix the relevant hyperparameters, such as cost coefficient.
Here, we set the weight λd of discriminator loss Ld as 0.05.
We then employ a different number of instance-level fea-
tures for each 1,000 from 1,000 to 5,000 during self-training.

As shown in Tab. 2, we confirm that the optimal number for
the best performance is 3,000; if it is higher or lower than
this, performance improvement becomes less significant.
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Figure 1: Ablative investigation on the matching cost coeffi-
cient λd of domain adaptive discriminator loss Ld. Here, we
set the number of instances features, the discriminator input,
to 3,000. We evaluate each module in Waymo Ñ nuScenes
setting on SECOND-IoU (Yan, Mao, and Li 2018).

Then, we explore the impact of the coefficient λd of
cost term Ld on our adaptation performance. Since the dis-
criminator is also affected by the number of input features,
we keep the number of input features at 3,000. We exe-
cute experiments independently several times, increasing the
weight value by 0.01 from 0.02 to 0.07. As shown in Fig. 1,
the performance gains as the weight increases, peaks (42.8 /
24.6) at 0.05, and then declines.

Table 3: Quantitative examination on λd and λent in
nuScenes Ñ Waymo setting on PV-RCNN (Shi et al. 2020).
We report moderate BEV AP and 3D AP of the car category
at IoU = 0.5. Note that we highlight the best in bold.

Task
CDAN PV-RCNN

λd λent BEV AP Ò 3D AP Ò

nuScenes (Caesar et al. 2020)
Ñ Waymo (Sun et al. 2020)

- - 53.04 42.75

0 0.5 53.35 43.18
0 1.0 53.75 43.99

0.5 0 56.53 45.25
1.0 0 56.57 45.30

0.5 1.0 57.46 45.01
1.0 0.5 58.20 45.51

1.0 1.0 58.57 45.58

Next, we concentrate on the ideal balance between the two
loss terms, Ld and Lent, utilized in the CDAN. Each Ld is
the discriminator loss, and Lent is BEV grid-wise entropy
loss for suppressing the uncertainty of features and improv-



Table 4: Quantitative examination on the azimuth angle θ of cross-domain mix-up strategy in nuScenes Ñ KITTI and nuScenes
Ñ Waymo setting on PV-RCNN (Shi et al. 2020). We report the azimuth angle and the corresponding ratio within a 3D point
cloud scene. Evaluation metrics include moderate BEV AP / 3D AP of the car category at IoU = 0.5. Bold indicates the best.

Task
Azimuth angle θ

00 (0%) 540 (15%) 1080 (30%) 1620 (45%) 2160 (60%) Random (0% - 40%)

nuScenes (Caesar et al. 2020) Ñ KITTI (Geiger, Lenz, and Urtasun 2012) 83.66 / 73.25 84.10 / 73.53 84.69 / 74.52 83.38 / 72.82 80.93 / 70.82 84.85 / 75.02

nuScenes (Caesar et al. 2020) Ñ Waymo (Sun et al. 2020) 56.26 / 44.73 56.56 / 45.16 57.07 / 45.27 56.04 / 43.55 53.19 / 41.88 58.57 / 45.58

ing the reliability of predictions. In Tab 3, we evaluate per-
formance while varying the weight value of each loss term,
λd and λent. First, if only one of the two loss terms is ap-
plied, the performance is higher when the weight is 1.0 than
when it is 0.5. In particular, we observe that Lent signifi-
cantly contributes to the geometrical reliability of the net-
work, increasing +0.71% and +1.24% in BEV AP and 3D
AP. Also, Ld boosts both BEV AP and 3D AP by +3.53%
and +2.55%, respectively, encouraging the broad recogni-
tion of unseen datasets. Subsequently, if both loss terms are
applied, the performance is the highest (58.57% / 45.58%)
when both weights are 1.0. The suitable harmony of the two
loss terms allows the model most stably adapts to the target.

Furthermore, we explore our cross-domain 3D point
cloud mix-up strategy, effectively bridging the distributional
gap. Specifically, we measure the generalizability based on
the azimuth angle θ during the swapping process. We con-
duct experiments independently several times, increasing
the angle by 15% from 0% to 60%. As shown in Tab. 4,
we observe that a constant azimuth angle causes inductive
bias, which limits the learning of domain-agnostic features.
In particular, excessive swapping interferes with the adap-
tive potential, extracting ambiguous features. However, ran-
domly setting the azimuth angle within a specific range (0%
- 40%) for iteration encourages learning domain-invariant
features, improving adaptation performance: achieving a
maximum +2.07% / +1.77% AP gain compared to θ “ 00.

We ultimately design our adaptive network with optimal
parameters and validate the remarkable efficiency of CDAN
in the target. Most importantly, the adversarial discrimina-
tor thoroughly handles the domain shift effect by mislead-
ing the network into incorrectly determining which domain
instances belong to. Finally, we achieve the current state-of-
the-art through our robust domain adaptive framework.

Qualitative Analysis.
In this section, we describe qualitative visualizations of our
proposd model. In Fig. 2, we capture various cases of detec-
tion on Waymo (Sun et al. 2020) Ñ nuScenes (Caesar et al.
2020) setting. In scene 1 and 2, Direct Transfer (magenta)
and ST3D (red) model output larger boxes than ground-truth
boxes (blue), while our predicted boxes (green) are rela-
tively similar. Although the bounding boxes of Waymo are
larger than nuScenes by (0.16, 0.15, 0.06), resulting in do-
main shift, our model overcomes this difficulty and adapts
better than other baselines. In scene 3 and 4, we observe
that DT and ST3D struggle when adapting from uniform-

labeled (vehicle) to various-labeled (car, truck, bus, trailer,
and construction vehicle) domains. Also, in scene 5, DT and
ST3D fail to perceive extremely distant objects in the tar-
get distribution utilizing low-beam LiDAR. Conversely, our
methodology relatively overcomes such issues compared to
existing studies. Significantly, it is noteworthy that our mod-
ule reliably recognizes the challenging samples of the target
without regularizing data distributions.

In addition to our main paper, we validate the potential of
our suggested cross-domain adaptive discriminator in Fig. 3.
Here, we compare with Direct Transfer (DT). We observe
that DT is usually limited to understanding the target do-
main. As we see in the first row (DT), the instance-level fea-
tures of each two domain form clearly distinct clusters. To
relieve this problem, our CDAN explicitly guides the net-
work to generate domain-variance features and maximizes
generalivability to unseen data distributions. The results of
the second row, where the features of the two domains are
harmoniously distributed, demonstrate that our module ef-
fectively guides the whole network.
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Figure 2: Qualitative visualization of subdomain shift in Waymo Ñ nuScenes. Blue, magenta, red, and green represent ground
truth, Direct Transfer, ST3D, and Ours, respectively. For better understanding, we visualize corresponding camera views along
with the red dotted line showing the region where the domain shift is prominent.
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Figure 3: t-SNE (van der Maaten and Hinton 2008) visualization of source (S) and target (T) domains’ features. To verify
the effectiveness of the cross-domain adversarial discriminator, we compare the instance-level features of the Direct Transfer
model (DT) with those of CMDA (ours). Compared to the DT, which produces distinct clusters for source and target domains,
ours creates more domain-invariant feature spaces. Here, we confirm that our self-training approach with CDAN effectively
overcomes the representational gap between the two domains. Best viewed in color.
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