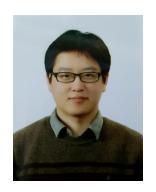


DaDA: Distortion-aware Domain Adaptation for Unsupervised Semantic Segmentation

Sujin Jang



Joohan Na

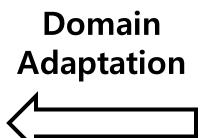
Dokwan Oh

Samsung Advanced Institute of Technology (SAIT)

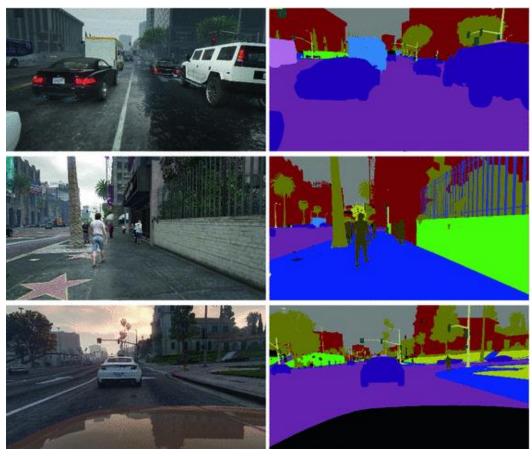
UDA for Semantic Segmentation

Target Domain

Cityscapes w/o Labels



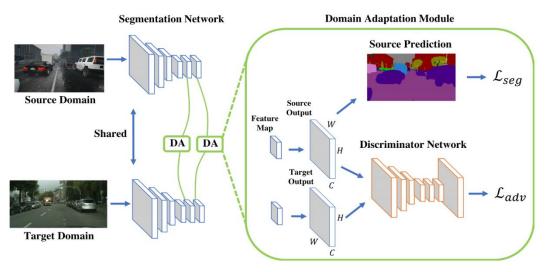
Source Domain



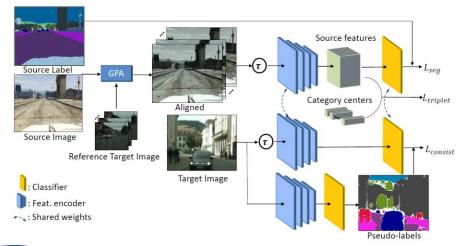
GTAV w/ Labels

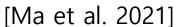
NEURAL INFORMATION

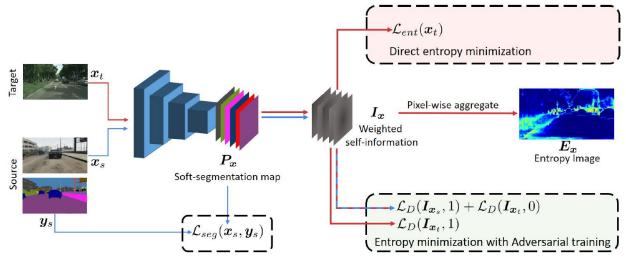
UDA for Semantic Segmentation



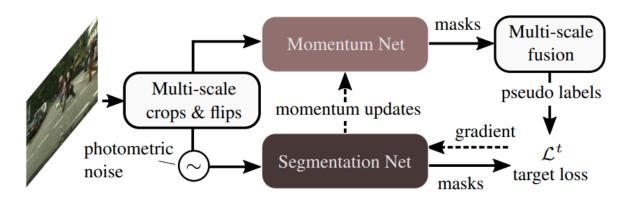
[Tsai et al. 2018]





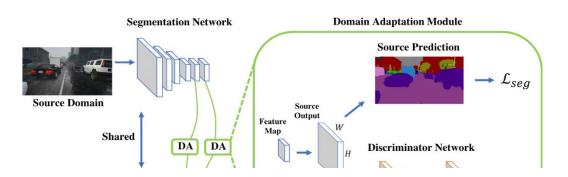


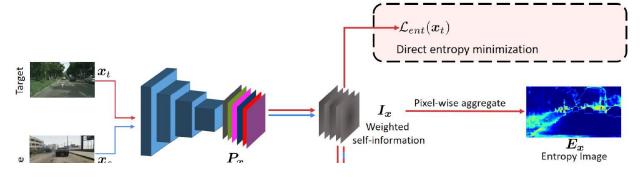
[Vu et al. 2019]



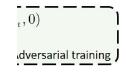
[Araslanov et al. 2021]

UDA for Semantic Segmentation

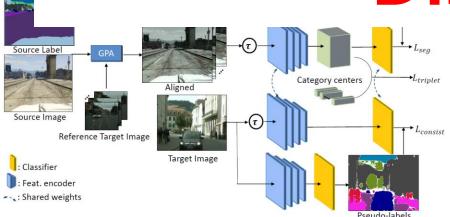


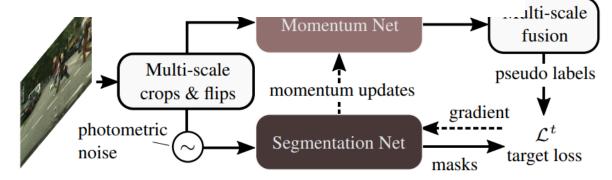


No Geometric and Optical



Distortion

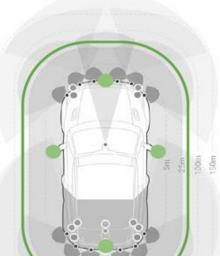




[Araslanov et al. 2021]

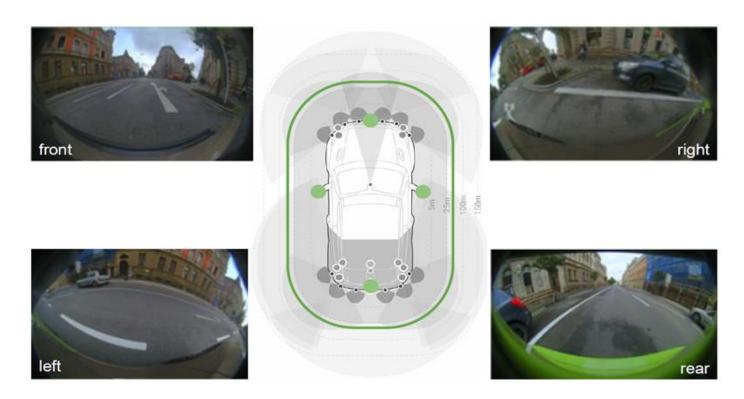
[Ma et al. 2021]

Wide-Angle Cameras



Woodscape Dataset for Autonomous Driving

Wide-Angle Cameras



Woodscape Dataset for Autonomous Driving

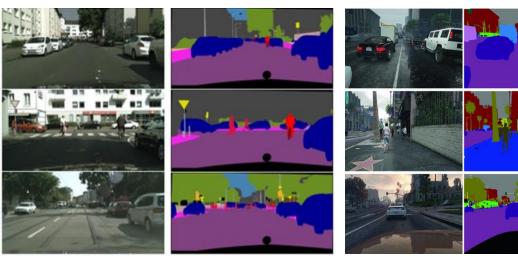
Distortion-aware Unsupervised Domain Adaptation

Target Domain

Visual
+
Distortion

Domain
Adaptation

Source Domain



Cityscapes GTAV

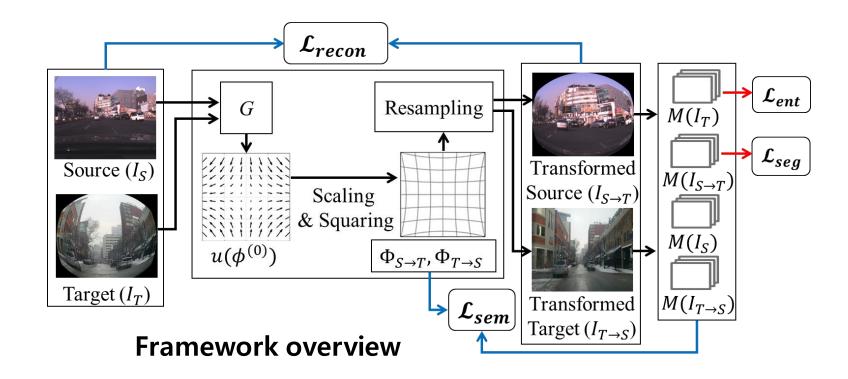
Woodscape Fisheye Driving Dataset(FDD)*

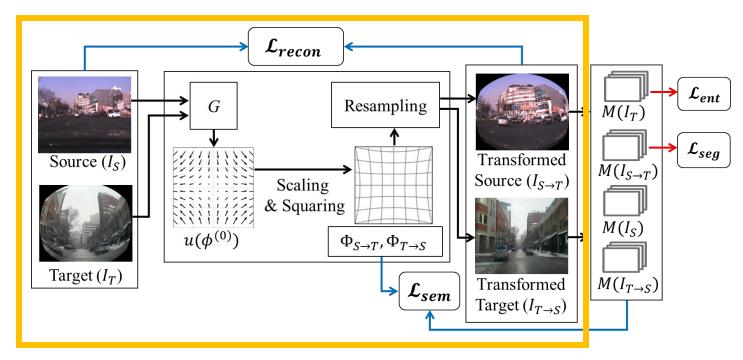
Unlabeled Fisheye Images

Labeled Rectilinear Images

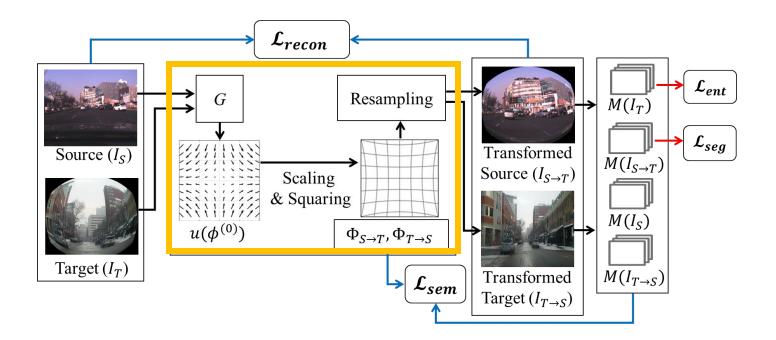
Our Contributions:

- New UDA benchmarks introducing geometric optical distortion;
- DaDA framework to solve such challenging but practically important tasks;
- Extensive experimental results to validate our approach.





Relative Distortion Learnig (RDL)



Diffeomorphic Transformation

- Globally one-to-one mapping
- Continuous and smooth
- Differentiable and invertible

$$G(I_S, I_T) = u(\phi^{(0)})$$

$$\frac{\partial \phi^{(t)}}{\partial t} = u(\phi^{(t)}), \quad u \in \mathbb{R}^{2 \times w \times h}$$

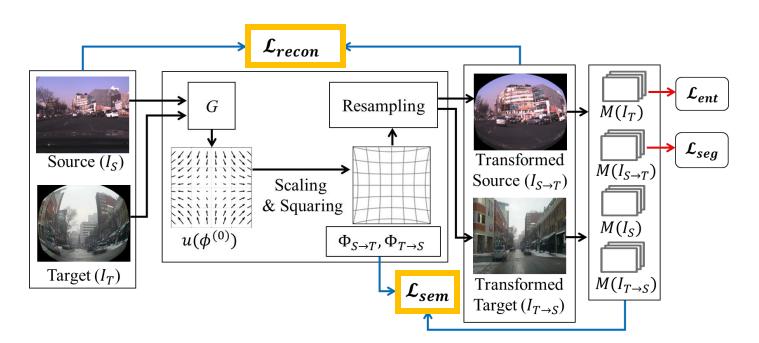
Squaring-and-Scaling Integration

$$\phi^{(1/2^T)} = \phi^{(0)} + u/2^T$$

$$\phi^{(1/2^{t-1})} = \phi^{(1/2^t)} \circ \phi^{(1/2^t)}$$

Forward field: $\Phi_{S \to T}$

Backward field: $\Phi_{T \to S}$



Distortion-aware Losses

$$\mathcal{L}_{recon} = ||I_S - I_S'||_1 + ||I_T - I_T'||_1,$$

where $I_S' = I_{S \to T} \circ \Phi_{T \to S}, \ I_T' = I_{T \to S} \circ \Phi_{S \to T}$

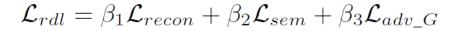
$$\mathcal{L}_{sem} = \|M(I_S) \circ \Phi_{S \to T} - M(I_{S \to T})\|_1 + \|M(I_T) \circ \Phi_{T \to S} - M(I_{T \to S})\|_1.$$

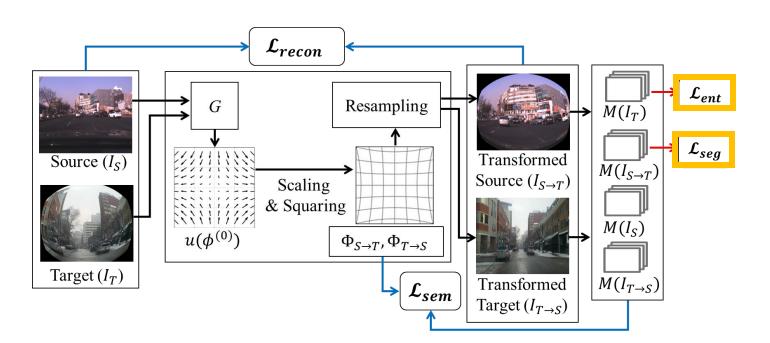
Distortion-aware Discriminator and Adversarial Loss

$$\mathcal{L}_{D_G} = \mathbb{E}_{I_S \sim \mathcal{S}, I_T \sim \mathcal{T}} [1 - D_G(I_S \circ \Phi_{S \to T}, \nabla(I_S \circ \Phi_{S \to T}))] + \mathbb{E}_{I_T \sim \mathcal{T}} [D_G(I_T, \nabla I_T)].$$

$$\mathcal{L}_{adv_G} = \mathbb{E}_{I_S \sim \mathcal{S}, I_T \sim \mathcal{T}} [D_G(I_S \circ \Phi_{S \to T}, \nabla(I_S \circ \Phi_{S \to T}))],$$

Total Loss for RDL





Distortion-aware Adversarial Adaptation

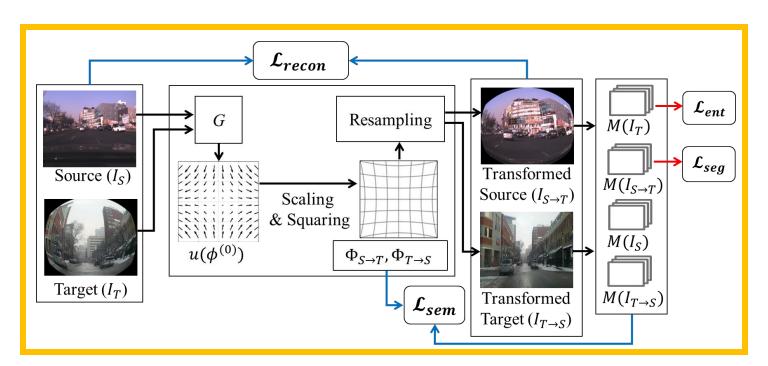
$$\mathcal{L}_{seg} = -\sum_{h,w} \sum_{c \in C} Y_{S \to T}^{(h,w,c)} \log(M(I_{S \to T})^{(h,w,c)})$$

$$\mathcal{L}_{ent} = \frac{-1}{\log(C)} \sum_{h,w} \sum_{c \in C} M(I_T)^{(h,w,c)} \log M(I_T)^{(h,w,c)}$$

Distortion-aware Discriminator and Adversarial Loss

$$\mathcal{L}_{D_M} = \mathbb{E}_{I_S \sim \mathcal{S}, I_T \sim \mathcal{T}}[1 - D_M(M(I_S \circ \Phi_{S \to T}))] + \mathbb{E}_{I_T \sim \mathcal{T}}[D_M(M(I_T))]$$

$$\mathcal{L}_{adv_M} = \mathbb{E}_{I_T \sim \mathcal{T}}[D_M(1 - M(I_T))]$$



Distortion-aware Adversarial Adaptation

$$\mathcal{L}_{seg} = -\sum_{h,w} \sum_{c \in C} Y_{S \to T}^{(h,w,c)} \log(M(I_{S \to T})^{(h,w,c)})$$

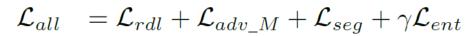
$$\mathcal{L}_{ent} = \frac{-1}{\log(C)} \sum_{h,w} \sum_{c \in C} M(I_T)^{(h,w,c)} \log M(I_T)^{(h,w,c)}$$

Distortion-aware Discriminator and Adversarial Loss

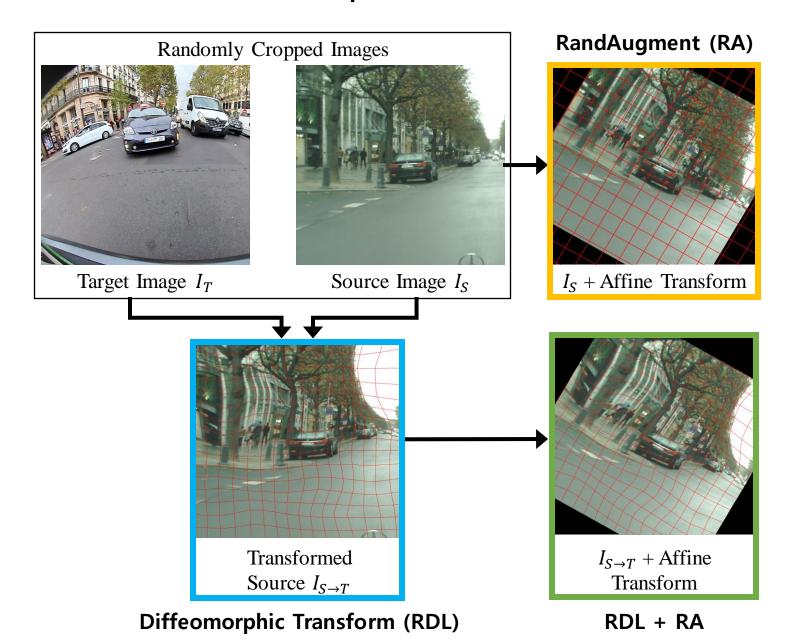
$$\mathcal{L}_{D_M} = \mathbb{E}_{I_S \sim \mathcal{S}, I_T \sim \mathcal{T}} [1 - D_M(M(I_S \circ \Phi_{S \to T}))] + \mathbb{E}_{I_T \sim \mathcal{T}} [D_M(M(I_T))]$$

$$\mathcal{L}_{adv\ M} = \mathbb{E}_{I_T \sim \mathcal{T}} [D_M(1 - M(I_T))]$$

Total Loss for Segmentation Adaptation

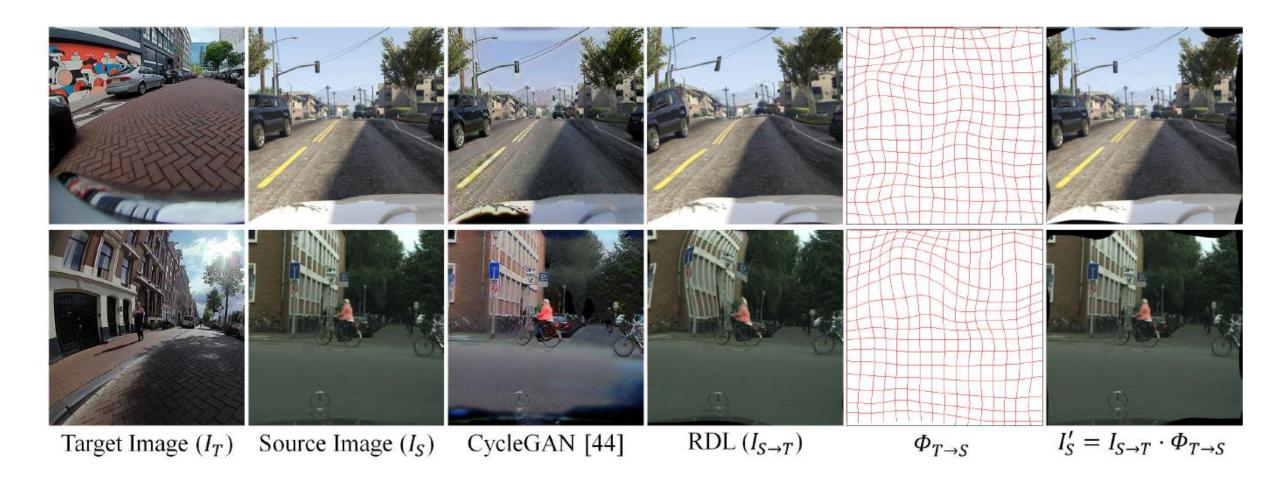


Experiments – Diffeomorphic and Affine Transformation



NEURAL INFORMATION PROCESSING SYSTEMS

Experiments – Distortion Style Translation



Experiments – Quantitative Results

Comparisons with the baseline adaptation methods.

	Cityscapes		GTAV		Cityscapes		GTAV	
	\rightarrow Woodscape		\rightarrow Woodscape		\rightarrow FDD		\rightarrow FD	D
Method	mIoU(%)	gain	mIoU(%)	gain	mIoU(%)	gain	mIoU(%)	gain
SourceOnly	32.39		29.32		34.76		32.13	
AdaptSeg [33]	46.33		35.94		39.07		36.90	
AdaptSeg+RA	50.44	+4.11	36.88	+0.94	39.42	+0.35	37.22	+0.32
AdaptSeg+RDL	50.88	+4.55	37.36	+1.42	41.35	+2.28	39.29	+2.39
AdaptSeg+RA+RDL	52.59	+6.26	37.73	+1.78	41.07	+2.00	39.64	+2.74
AdvEnt [34]	45.26		34.70		38.87		37.25	
AdvEnt+RA	50.60	+5.34	36.64	+1.94	41.58	+2.71	38.75	+1.50
AdvEnt+RDL	50.94	+5.68	36.39	+1.69	42.43	+3.56	39.93	+2.68
AdvEnt+RA+RDL	52.64	+7.38	37.62	+2.92	42.32	+3.45	40.87	+3.62

Experiments – Quantitative Results

Effect of DaDA on Self-Supervised Learning (SSL)

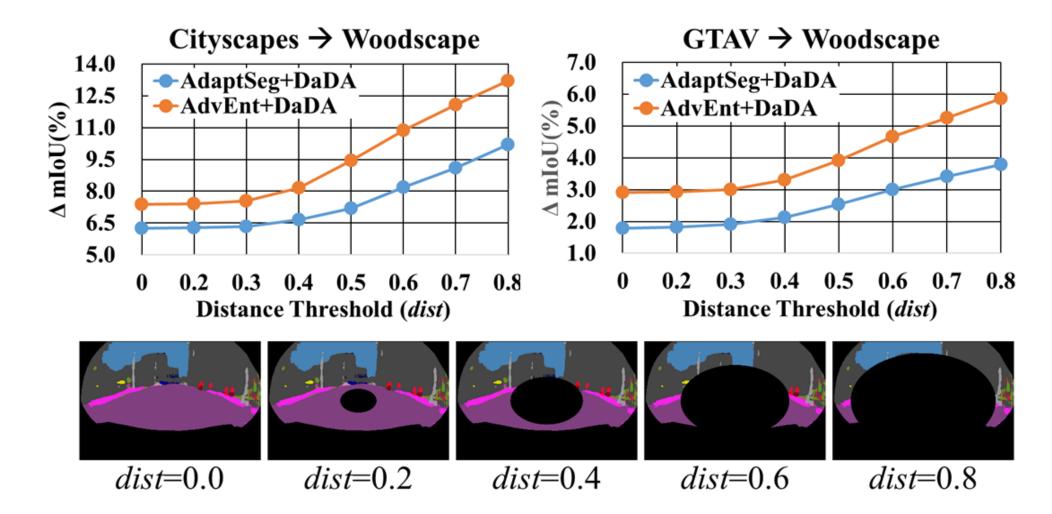
		Cityscapes → Woodscape		GTAV → Woodscape		Cityscapes → FDD		GTAV → FDD	
SSL Method	+DaDA	mIoU(%)	gain	mIoU(%)	gain	mIoU(%)	gain	mIoU(%)	gain
IAST [26]	√	47.00 53.82	+6.82	38.83 40.75	+1.92	39.60 44.46	+4.86	37.47 40.06	+2.59
IntraDA [27]	√	48.92 53.24	+4.32	36.10 39.85	+3.75	40.36 45.28	+4.92	38.61 42.10	+3.49
ProDA [40]	√	50.69 54.83	+4.14	34.44 35.75	+1.31	39.72 42.14	+2.42	35.97 37.09	+1.12

Experiments – Quantitative Results

Ablation results on the distortion-aware losses.

Base Method	$+\mathcal{L}_{adv_G}$	$+\mathcal{L}_{sem}$	$+\mathcal{L}_{recon}$	Cityscapes → Woodscape	$ GTAV \rightarrow Woodscape $
AdaptSeg [33]				46.33	35.94
	√			49.61	36.45
	√	√		50.29	36.75
	√		√	49.97	37.17
	√	√	√	50.88	37.36
AdvEnt [34]				45.26	34.70
	√			47.77	35.36
	√	√		49.22	35.77
	√		√	50.32	36.11
	√	√	√	50.94	36.39

Experiments – Distortion-aware mIoU(%)



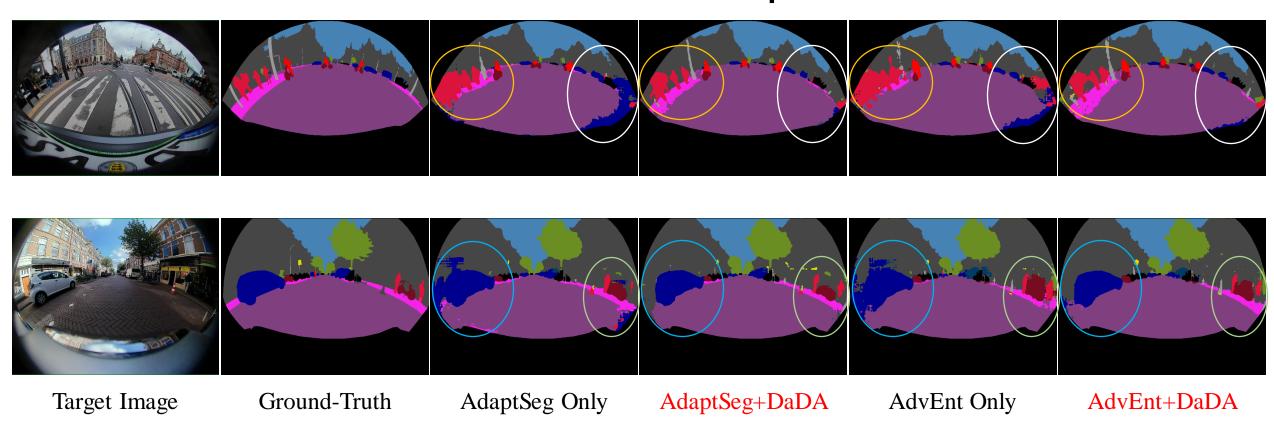
Experiments – Distortion-aware mIoU(%)

Table 8: Performance gain achieved by adding DaDA increases as dist increases.

$\mathbf{Cityscapes} o \mathbf{Woodscape}$										
Method	dist=0.0	dist=0.2	dist=0.4	dist=0.6	dist=0.8	gain@0.0	gain@0.2	gain@0.4	gain@0.6	gain@0.8
AdaptSeg [10]	46.33	46.27	46.11	43.89	38.22					
AdaptSeg+DaDA	52.59	52.55	52.78	52.08	48.42	+6.26	+6.28	+6.67	+8.19	+10.20
AdvEnt [7]	45.26	45.19	44.97	42.54	37.44					
AdvEnt+DaDA	52.64	52.60	53.14	53.41	50.65	+7.38	+7.41	+8.17	+10.87	+13.21
GTAV o Woodscape										
Method	dist=0.0	dist=0.2	dist=0.4	dist=0.6	dist=0.8	gain@0.0	gain@0.2	gain@0.4	gain@0.6	gain@0.8
AdaptSeg [10]	35.94	35.92	35.68	33.95	30.46					
AdaptSeg+DaDA	37.73	37.74	37.80	36.95	34.25	+1.78	+1.82	+2.12	+3.00	+3.79
AdvEnt [7]	34.70	34.67	34.54	32.94	28.94					
AdvEnt+DaDA	37.62	37.61	37.85	37.60	34.81	+2.92	+2.94	+3.31	+4.66	+5.87

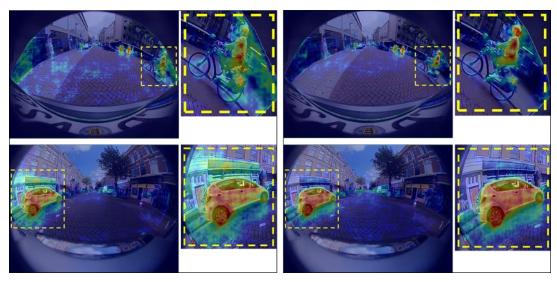
Experiments – Qualitative Result

Qualitative Examples



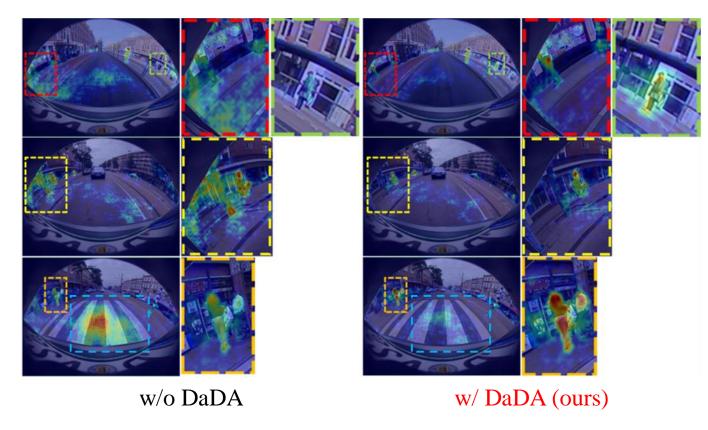
Experiments – Qualitative Result

Class Activation Visualizations



w/o DaDA

w/ DaDA (ours)



Conclusion

- Practically Meaningful and New unsupervised domain adaptation benchmarks posing challenging tasks
 - Visual + **Distortion** domain gaps;
 - Fisheye Driving Dataset (FDD) available at https://sait-fdd.github.io/
- A novel distortion-aware domain adaptation (DaDA) framework;
 - Unsupervised and Unpaired Relative Distortion Learning;
 - Relative Deformation Field Generator based on diffeomorphism
- A solid baseline and new perspective on geometric distortion in unsupervised domain adaptation.

Thanks for Watching!

FDD Dataset &
&
More Information
https://sait-fdd.github.io/

