
STXD: Structural and Temporal Cross-Modal Distillation for Multi-View 3D Object Detection

Sujin Jang*¹ Dae Ung Jo*¹ Sung Ju Hwang² Dongwook Lee¹ Daehyun Ji¹

Samsung Advanced Institute of Technology (SAIT) ¹
Korea Advanced Institute of Science and Technology (KAIST) ²

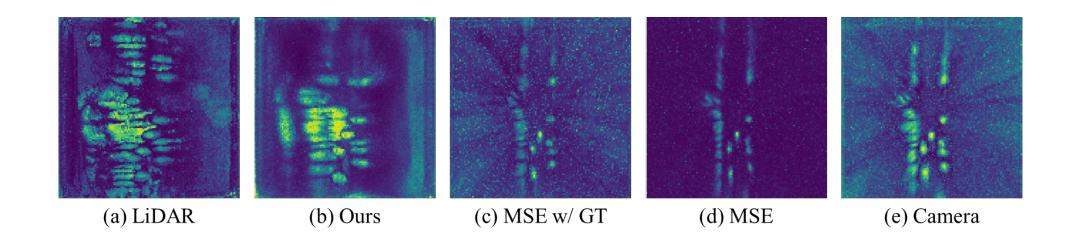
3D Object Detection in Autonomous Driving

- Locate and classify various objects (e.g. car, truck, ...) in 3D space
- From 3DOD, we can understand the surrounding environment
- Widely applied to various complex vision systems, such as autonomous driving

Multi-view camera

Bird's-eye-view (BEV)

Cross-Modal Knowledge Distillation

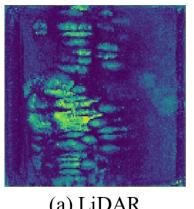

Camera-based

- LiDAR-based
- ↑ Rich 3D information
- ↑ High performance in 3DOD
- Lack of color information
- ↓ Expensive

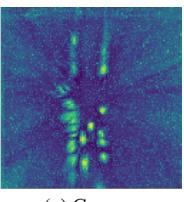
- Rich color information
- ↑ Low cost
- ↓ Lack of 3D information
- ↓ Low performance in 3DOD

Contributions

- We propose <u>STXD</u>, a cross-modal knowledge distillation framework from LiDAR to camera sensor for the multi-view 3D object detection
- Correlation Regularizing Distillation (CD) is introduced to prevent information collapse in student model arisen by modality gap between teacher and student sensors
- <u>Temporal Consistency Distillation (TD)</u> is introduced to leverage temporal knowledge embedded in features of previous frames



Correlation Regularizing Distillation (CD)


- In our empirical observation, CMKD causes <u>information collapse</u> in student features
- This is because features learned by different modalities are typically non-homogeneous.
- Thus, there exist distributional divergences between the feature spaces.

Method	$d_{ m eff}$	$d_{ m eff}^2$
MSE	3.810	14.519
MSE w/ GT	4.059	16.474
CD (Ours)	4.389	19.267
Teacher	5.757	33.137

 $d_{\rm eff}$: Effective dimension of student / teacher features

(e) Camera

Correlation Regularizing Distillation (CD)

- To mitigate information collapse problem, we introduce <u>cross-correlation regularization</u>
- Given LiDAR (F) and camera (G) BEV features,

$$\mathbf{C} = \hat{\mathbf{F}}^T \hat{\mathbf{G}} \in \mathbb{R}^{D \times D},$$

$$\mathcal{L}_{CD} := \sum_{i} (1 - \mathbf{C}(i, i))^2 + \lambda_c \sum_{i} \sum_{j \neq i} \mathbf{C}(i, j)^2$$

Maximize the similarity between aligned features

Regularize cross-correlation along feature dimensions to **prevent information collapse**

Temporal Consistency Distillation (TD)

- To further enhance distillation quality, temporal information is also transferred
- To avoid spatial false matching across the time frames,
- Indirectly distills the teacher's information from past frames by a temporal similarity map

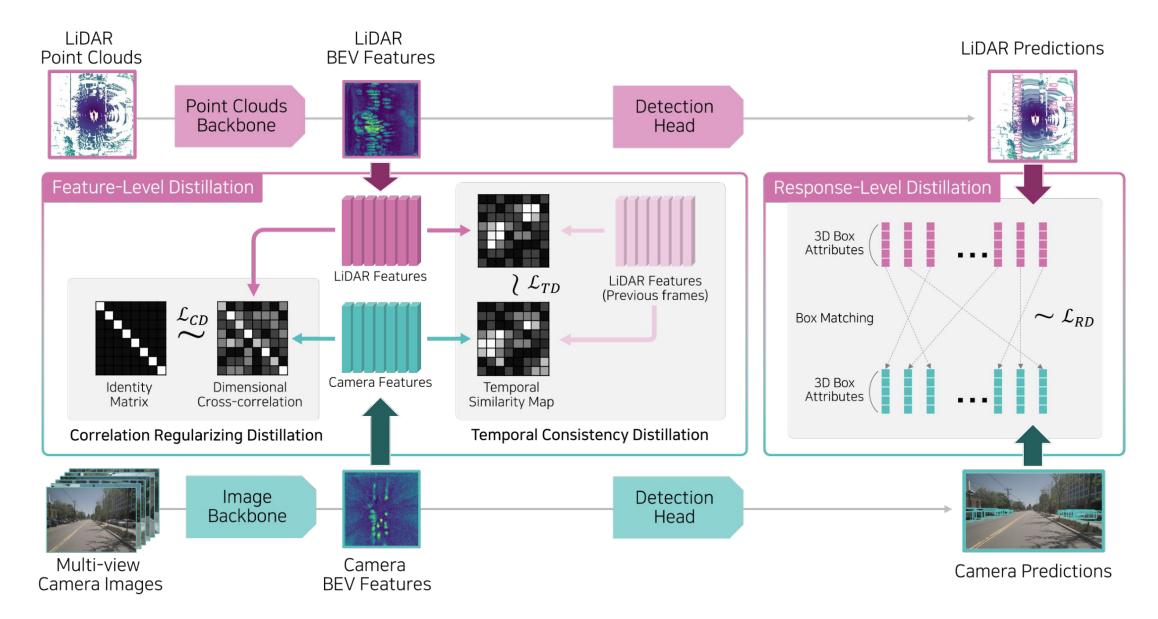
Temporal similarity map

$$\mathbf{T}^{(-k)} = \mathbf{F}^{(0)} \mathbf{F}^{(-k)^T} \in \mathbb{R}^{N \times N}, \quad k \in [1, K]$$

$$\mathbf{S}^{(-k)} = \mathbf{G}^{(0)} \mathbf{F}^{(-k)^T} \in \mathbb{R}^{N \times N}, \quad k \in [1, K]$$

$$\mathcal{L}_{TD} := \sum_{k} D_{KL} (\mathbf{S}^{(-k)} || \mathbf{T}^{(-k)})$$

Response-Level Distillation (RD)


- Distillation is also performed on the predictions (responses)
- We applied a quality-based response-level distillation method

Quality of teacher's prediction

$$q_i = \left(c_i^*\right)^{1-\gamma} \cdot \left(\text{IoU}(\mathbf{b}_i^*, \mathbf{b}_i)\right)^{\gamma}$$

$$\mathcal{L}_{RD} := \sum_j q_{\pi(j)} \cdot \left(\|\mathbf{b}_{\pi(j)} - \tilde{\mathbf{b}}_j\|_1 + D_{KL}(\mathbf{c}_{\pi(j)}\|\tilde{\mathbf{c}}_j)\right)$$

Overall Framework

Evaluation on NuScenes Dataset

Method	Modality	NDS(%)	mAP(%)
BEVFormer [†] [34]	C	51.4	40.5
+BEVDistill [9]	$L \rightarrow C$	52.4	41.7
+STXD (Ours)	$L \rightarrow C$	54.3 +2	.9 44.0+3.
UVTR-C [29]	C	44.1	36.2
+L2C [29]	$L \rightarrow C$	45.0	37.2
+STXD (Ours)	$L \rightarrow C$	46.1 +2	.0 39.0+2.
UVTR-CS [29]	C	48.3	37.9
+L2CS [29]	$L \rightarrow C$	48.8	39.2
+STXD (Ours)	$L \rightarrow C$	50.8 +2	.5 41.4+3.

Method	Modality	NDS(%)	mAP(%)
BEVFormer [†] [34]	$\begin{array}{c c} C \\ L \rightarrow C \end{array}$	52.6	42.4
+STXD (Ours)		55.5+2	.9 46.5 +3.9
BEVFormer [‡] [34]	$\begin{array}{c c} C \\ L \rightarrow C \end{array}$	55.5	45.7
+STXD (Ours)		58.3+2	. 8 49.7 +4 .0
UVTR-C [29]	$\begin{array}{c c} C \\ L \to C \\ L \to C \end{array}$	43.0	36.4
+L2C [29]		44.0	38.2
+STXD (Ours)		45.8+2	.8 40.2 +3 .8
UVTR-CS [29]	$ \begin{array}{c c} C \\ L \to C \\ L \to C \end{array} $	48.6	39.0
+L2CS [29]		48.7	39.8
+STXD (Ours)		51.8+3	.2 43.5 +4.5

Validation Set

Test Set

Thank You for Your Attentions!

If you're interested, please visit our poster at

Poster Session 1
Tue 12 Dec 10:45 a.m. CST – 12:45 p.m. CST

@Great Hall & Hall B1+B2 #222